The Perseverance rover, built at NASA’s Jet Propulsion Laboratory in Southern California, is loaded with scientific instruments, advanced computational capabilities for landing and other new systems. With a chassis, about 10 feet (3 meters) long, Perseverance is also the largest, heaviest robotic Mars rover NASA has built. What drives its ambitious mission and what will it do at the Red Planet? Here are seven facts you should know about Perseverance Rover:

1. The Perseverance Rover embodies NASA and the American spirit of overcoming challenges.


Getting the spacecraft to the launch pad this summer has required an extended effort. Concept studies and early technology work started a decade ago — years before the project was formally announced in December 2012. Landing on another planet, searching for signs of ancient life, collecting samples and proving new technologies will also be tough. These challenges epitomize why NASA chose the name Perseverance from among the 28,000 essays submitted during the “Name the Rover” contest. The months leading up to the launch, in particular, have required creative problem solving and teamwork during the coronavirus pandemic.

December 2012. Landing on another planet, searching for signs of ancient life, collecting samples and proving new technologies will also be tough. These challenges epitomize why NASA chose the name Perseverance from among the 28,000 essays submitted during the “Name the Rover” contest. The months leading up to the launch in particular have required creative problem solving and teamwork during the coronavirus pandemic.

As Alex Mather of Lake Braddock Secondary School in Burke, Virginia, wrote in his winning essay,

“We are a species of explorers, and we will meet many setbacks on the way to Mars. However, we can persevere. We, not as a nation but as humans, will not give up.”

2. Perseverance builds on the lessons of other Mars rovers.

NASA’s first rover on Mars was modest: Sojourner, the size of a microwave oven, demonstrated in 1997 that a robot could rove on the Red Planet. NASA’s next Mars rovers, Spirit and Opportunity, were each the size of a golf cart. After landing in 2004, they discovered evidence that the planet once hosted running water before becoming a frozen desert. The car-sized Curiosity rover landed in 2012. Curiosity discovered that its landing site, Gale Crater, hosted lake billions of years ago and an environment that could have supported microbial life. Perseverance aims to take the next step, seeking, as a primary goal, to answer one of the key questions of astrobiology: Are there potential signs of past microbial life, or biosignatures on Mars?

This demanding science goal requires a new suite of cutting-edge instruments to tackle the question from many angles. The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument, which can detect organic matter, and the Planetary Instrument for X-ray Lithochemistry (PIXL), which measures the composition of rocks and soil, will allow Perseverance to map organic matter, chemical composition and texture together at a higher level of detail than any Mars rover has done before. These instruments — two of the seven total onboard — will play a particularly important role in Perseverance’s search for potential signs of life.

check about other past mars missions here-Missions to Mars – Spirit and Opportunity

3. The rover will be landing in a place with high potential for finding signs of past Microbial life


Jezero Crater on Mars is a 28-mile-wide (45-kilometer- wide) crater on the western edge of Isidis Planitia, a giant impact basin just north of the Martian equator. The crater was a possible oasis in its distant past.

Between 3 billion and 4 billion years ago, a river there flowed into a body of water the size of Lake Tahoe, depositing sediments packed with carbonite minerals and clay. The Perseverance science team believes this ancient river delta could have collected and preserved organic molecules and other potential signs of microbial life.

4. Perseverance will also be collecting important data about Mars’ geology and climate


Mars orbiters have been collecting images and data from Jezero Crater from about 200 miles (322 kilometers) above, but finding signs of ancient life on the surface requires much closer inspection. It requires a rover like Perseverance. Understanding Mars’ past climate conditions and reading the geological history embedded in its rocks will give scientists a richer sense of what the planet was like in its distant past. Studying the Red Planet’s geology and climate could also give us a sense of why Earth and Mars — which formed from the same primordial stuff .

5. Perseverance is the first leg of a round trip to Mars

The verification of ancient life on Mars carries an enormous burden of proof. Perseverance is the first rover to bring a sample caching system to Mars that will package promising samples for return to Earth by a future mission. Rather than pulverizing rock the way Curiosity’s drill does, Perseverance’s drill will cut intact rock cores that are about the size of a piece of chalk and will place them in sample tubes that it will store until the rover reaches an appropriate drop-off location.


A Mars sample return campaign is being planned by NASA and the European Space Agency because here on Earth we can investigate the samples with instruments too large and complex to send to Mars. Examining those samples on Earth will provide far more information about them than even the most sophisticated rover could provide.

6. Perseverance carries instruments and technology that will pave the way for future human missions to the Moon and Mars


Among the future-looking technologies on the Mars 2020 Perseverance mission that will benefit human exploration is the rover’s Terrain-Relative Navigation system. Part of the landing system, Terrain-Relative Navigation is the main reason Perseverance can explore a place as interesting as Jezero Crater. It will enable the rover to quickly and autonomously comprehend its location over the Martian surface and modify its trajectory during descent. This technology will be able to provide invaluable assistance for both robotic and crewed missions landing on the Moon and is a must for future robotic and crewed exploration of Mars.

Engineers have also given Perseverance more self-driving smarts than any other rover, allowing it to cover more ground in a day’s operations without having to wait for engineers on Earth to send up instructions. Calculated over the length of the mission, this fast pace can translate into more science. This fast-traverse capability (courtesy of upgraded sensors, computers and algorithms) will make exploration of the Moon, Mars and other celestial bodies more efficient for other spacecraft.

Perseverance also carries a technology demonstration — a proof-of-concept experiment called MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment). This instrument will produce oxygen from Mars’ carbon dioxide atmosphere, demonstrating a way that future explorers might produce oxygen for rocket propellant as well as for breathing.

The Mars Environmental Dynamics Analyzer (MEDA) instrument suite will also be key for future human exploration, providing information about the current weather and climate, as well as the nature of the dust on the surface. The Mars Science Laboratory Entry, Descent and Landing Instrumentation 2 (MEDLI2) package, a next-generation version of what flew on the Mars Science Laboratory mission that delivered the Curiosity rover, will help human exploration, too, providing data about the entry and descent of the spacecraft through the atmosphere.

7. You will get to ride along


The Mars 2020 Perseverance mission carries more cameras than any interplanetary mission in history. The Perseverance rover itself has 19 cameras that will deliver images of the landscape in breathtaking detail. The other parts of the spacecraft involved in entry, descent and landing carry four additional cameras, potentially allowing engineers to put together a high-definition view of the landing process after the rover safely touches down on Mars. As with previous Mars missions, the Mars 2020 Perseverance mission plans to make raw and processed images available on the mission’s website.

In this spirit of bringing the public along, the Perseverance rover carries an anodized plate with the words “Explore as one” in Morse code and three silicon chips with the names of approximately 10.9 million people who signed up to ride along on Perseverance’s journey to Mars.

For More Please Visit Our Site and Subscribe to Our News Letter!


  1. Hi I am so happy I found your web site, I really found you by accident, while I was
    researching on Yahoo for something else, Anyhow I am
    here now and would just like to say thanks for a
    remarkable post and a all round thrilling blog (I also love the theme/design), I don’t have time to go through
    it all at the minute but I have saved it and also added in your RSS feeds, so when I have
    time I will be back to read a great deal more, Please do keep up
    the fantastic job.

  2. I have been exploring for a little bit for any high
    quality articles or blog posts on this sort of space .

    Exploring in Yahoo I at last stumbled upon this site.
    Reading this info So i’m happy to exhibit that
    I’ve an incredibly just right uncanny feeling I came upon just what I needed.
    I most no doubt will make certain to don?t disregard this web site and give
    it a glance on a continuing basis.


Please enter your comment!
Please enter your name here